什么是调制?调制就是把基带信号携带的信息转载到高频信号上的处理过程。而基带信号如话音信号,300~3400赫兹。而高频信号如电磁波,300K赫兹以上。 要对信号进行调制,主要是 1、适合信道的需要,且实现有效的辐射。
2、实现频率分配。 3、多路复用。 4、改善信噪比。 右图是调制的原理图. 其中调制信号为m(t),载波信号为c(t),已调信号为s(t). 调制器的分类: 1、根据m(t)的不同分:模拟调制和数字调制; 2、根据c(t)不同分:连续载波和脉冲载波调制; 3、根据c(t)参数变化不同:幅度调制、频率调制和相位调制。 4、按H(ω)特性分:线性和非线性调制。 而频率调制(FM)是利用信号x(t)的幅值调制载波的频率,或者说,调频波是一种随信号x(t)的电压幅值而变化的疏密度不同的等幅波.
因为调频信号所携带的信息包含在频率变化之中,并非振幅之中,而干扰波的干扰作用则主要表现在振幅之中.所以, 频率调制(FM)的抗干扰能力强.但是, 频率调制(FM)的缺点是占频带宽度大而且复杂:调频波通常要求很宽的频带,甚至为调幅所要求带宽的20倍;调频系统较之调幅系统复杂,因为频率调制是一种非线性调制。 频率调制(FM)在电子音乐合成技术中,是最有效的合成技术之一.它的基本原理可以这样理解:音频信号的改变往往是周期性的,一个最容易理解音频调制技术的范例是小提琴和揉弦,揉弦通过手指和手腕在琴弦上快速颤动,使琴弦的长度发生快速变化,从而最终影响小提琴声音的柔和度。与“FM无线电波”相同,“FM合成理论”同样也有着发音体(载体)和调制体两个元素。发音体或称载波体,是实际发出声音的频率振荡器;调制体或称调制器,负责调整变化载波所产生出来的声音。载波频率、调制体频率以及调制数值大小,是影响FM合成理论的重要因素。最基本的FMinstrument包括两个正弦曲线振荡器,一个是稳定不变的载波频率fc(CarrierFrequnecy)振荡器;一个是调制频率fm(ModulationFrequency)振荡器。载波频率被加在调制振荡器的输出上。载波振荡器是一个带有fc频率的简单的正弦波频率,当调制器发生时,来自调制振荡器的信号,即带有fm频率的正弦波,驱使载波振荡器的频率向上或向下变动,比如,一个250Hz正弦波的调制波,调制一个1000Hz正弦波的载波,那么意味着载波所产生的1000Hz的频率,每秒要接受250次的影响产生的调制。制体和载波体都是有频率、振幅、波形的周期性或准周期性振荡器。 在频率调制技术中,调制体的振幅同样对频率调制起关关键作用,调制体振幅影响着载波频率调制后变化的深度,假如调制信号的振幅是0,就不会出现任何调制,因此说,就像在振幅调制(AM)中,调制体的频率对载波体的振幅有影响一样,在频率调制(FM)中,载波的频率变化同样受调制体振幅大小变化的影响。 因此,在频率调制过程中,我们可以发现:1.调制体的频率影响载波体的频率的速度变化。2.调制体的振幅影响载波频率的深度变化。3.调制体的波形(或音色)影响载波频率的波形变化。4.载波体的振幅在频率调制过程中保持不变。 另外,脉冲频率调制(PFM)由于有诸多优点,在光通信中用途很广.脉冲频率调制传输方式是目前模拟视频光纤传输方式中传输质量最高的方式之一,其原理是调制脉冲重复频率随信号幅度大小呈线性变化,而脉宽保持不变。PFM 是信号光强度调制前的一种预处理过程,信号经过脉冲调制后,频谱会变宽,并以此可以换取传输质量的提高。而PFM 处理带来的传输带宽的增加,对于带宽极宽的光纤来说并不存在什么问题,而且由于光源的非线性对系统的影响不大,故光调制深度可以增加,进一步提高系统的信噪比。 通过脉冲频率调制可实现单路视频传输,多路视频传输,视频/数据传输。下面对几种方案做简要描述。 1 单路视频传输 单路视频传输系统工作原理如图1,在发射端基带视频信号经过预加重,进行PFM 调制,然后去调制激光器。而在接收端通过PIN 管将光信号转化成电信号,经过PFM 解调恢复出视频信号。
视频信号经过PFM 后,频谱呈第一类贝塞尔函数分布,频谱中含有无穷多个频率分量,但功率谱主要集中在载波和低次谐波分量上,高次边频分量可略去不计,因此PFM 信号可近似认为具有有限频谱。基带视频信号的带宽为8MHz,经过PFM 调制后,信号带宽可限定在30 MHz以上而不会明显影响PFM 性能。 不同于基带视频信号直接光强度调制方式,该系统对发光器件没有特殊要求,可以根据实际工程需要选用不同的发光器件。如多模850nm 波长LED 满足4 公里以内应用,单模1310nm波长LD 满足30 公里以内应用,单模1550nm 波长DFB 激光器满足100 公里以内应用。无论是多模LED,还是单模LD,系统都具有良好的性能。批量测试结果表明,系统经过光纤传输后,系统主要指标为:加权信噪比为60dB,微分增益为3%,微分相位为3°。 由于PFM 信号解调输出噪声功率谱密度和调频信号解调输出噪声功率谱密度一样,呈三角形噪声特性,造成高频端噪声大而低频端噪声小的现象。为了克服这种现象,在设计中往往采用预加重和去加重电路。预加重使视频信号在频率上人为地加以预倾斜,使高频端升高,低频端压低。在接收端解调时,由于信号高频端电平提升而使解调信噪比有所提高,而低频端则有所降低,从而均衡了带内信噪比的分布。另外,预加重对低频成分起着压缩作用,也压缩了亮度信号的动态范围,从而降低了微分增益和微分相位的失真。 2 多路视频传输 通过将多路视频分别调制于不同的频率范围,然后进行频分复用,可以在单根光纤中实现多路视频传输。其发射部分原理框图如图2,接收部分原理是发射部分的逆过程。
从理论上讲,光纤和光器件的带宽极大,完全满足8 路以上多路视频频分复用的带宽要求。但实际上由于目前采用的分立元件,特别是高频电容和电感的精密度和稳定性不够,使得PFM中心频率的稳定性不好,中心频率会随时间和温度漂移,加上带通滤波器的特性也会随温度变化,给多路视频复用带来很多不稳定因素。所以目前较为成熟的也只是四路图像的频分复用。 3 视频/数据传输 通过PFM 方式不仅可以完成较高质量的视频传输,而且可以完成一路甚至多路双向数据传输。正向数据工作原理是在发射端首先将数据信号进行FSK 调制,再将FSK 信号和视频基带信号混合,然后将混合信号进行PFM 调制。在接收端首先进行PFM 解调,通过带通滤波器分离出视频信号和FSK 信号,最后进行FSK 解调,还原出数据信号。反向数据则直接对发光器件进行强度调制。原理框图如图3。 视频、数据混合传输存在两个问题: (1) 视频和正向数据间相互干扰。由于数据信号经过FSK 调制和带通滤波后仍存在较丰富的谐波成分,这些谐波成分会影响视频信号,使视频信号受到干扰。为了降低这种干扰,可以通过降低FSK 幅度的方法来实现,但FSK 幅度过低会造成数据解调不出来或数据误码过高。 (2) 数据速率不高。目前比较成熟的FSK 技术适合于速率为1Mbps 的数据信号的调制解调,在异步数据通信中往往采用8 倍的过采样,所以这种FSK 技术可以传输一路速率为115.2Kbps 的高速异步数据。但如果要传输多路异步数据,异步数据的速率则远低于115.2Kbps。